If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x-200=0
a = 1; b = 32; c = -200;
Δ = b2-4ac
Δ = 322-4·1·(-200)
Δ = 1824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1824}=\sqrt{16*114}=\sqrt{16}*\sqrt{114}=4\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{114}}{2*1}=\frac{-32-4\sqrt{114}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{114}}{2*1}=\frac{-32+4\sqrt{114}}{2} $
| n+0.6n=32 | | 3z+11=28 | | 32z=23z+9 | | 180=90+(2x+2)°+(x+5)° | | 13–2(4r–5)=5–(7+8r) | | -2(4x+1)+4x=6(5x-8)-6 | | F(x)=½(x+8) | | 5z^2=2-9z | | 3k^2+147=0 | | 9x+12=18.5 | | 9x+12=14.5 | | 8y+3=73 | | 3r^2-33r=0 | | y=-2(-4)-3 | | 100=10-15p | | 100=10p-15 | | m^2=14-5m | | 3x-7+9-x=x+2 | | s^2+3s+16=0 | | 8x–4=6x+12 | | 3x+104x−2;x=1 | | n^2-2n-7=8 | | 2/5(10x-15)=2(x-4) | | 4.4x-9.2=21.6 | | F(x)=2(5×-2)^2+5(5×-2)-9 | | -5=10x+2 | | 1x1=34 | | 2.2x-8.6=6.8 | | 3x-5*2x=135 | | 100x=9/12 | | 100/x=9/12 | | 46x+36=46x+36 |